
Homework 3

1. Cross sections

Of key importance to experimental nuclear physics is understanding how often (or at what probability)
nuclei will react to form new nuclides. To illistrate this imagine a wet ball, moving towards a tissue paper
round of radius a, with some speed. It is quite easy to convince yourself that the ball will catch the tissue
paper round if and only if it is travelling within the cross-sectional area of the tissue. The bigger the tissue,
the more likely the ball is to catch it. The reaction cross section for this reaction can then be expressed
numerically as:

σ(E) = πa2 (1)

Now, imagine that both the ball and tissue paper can carry an electric charge. Knowing that like-charges
repel and unlike-charges attract, we can qualitatively modify this cross section to account for this new
interaction. If the ball and tissue have like charges, then they have a force acting on them, trying to push
them apart. This can push the ball outside of the tissue papers cross-sectional area before it can react.
In effect, it reduces the area of the paper and reduces the chance of hitting the paper. Alternatively,
unlike-charges attract each other. This attraction will now pull the ball closer to the paper, thus balls
that normally would have zoomed by, now have a greater chance of catching the paper, increasing the
cross-section.

We will adopt this qualitative picture of reactions. Naively we would then assume that nuclear cross-
sections similarly scale with the size of the system (RN , the nuclear radius). However, note that nuclear
systems are quantum mechanical and not classical; therefore they are a bit more complicated. One principle
idea of quantum mechanics is the idea that particles can behave like waves and vica-versa. The intrinsic
wavelength of a particle, is known as the deBroglie wavelength (λ = h/p or λ = ~/p) and is related to the
particle’s momentum. For a system of two particles, we use the relative momentum (~q = µ
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where the reduced mass is µ = m1m2
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), as opposed to using the total momentum (~P = ~p1 + ~p2). One
can see that as the energy (and momentum) gets smaller, the deBroglie wavelength gets larger. In fact,
this becomes much larger than the actual radii of the nuclides involved. Thus, the fuzziness of quantum
mechanics makes the nuclei seem larger than they really are. We can then expect that it is only at higher
energies that the size of the nuclides will be important and thus dominate the cross-section. We thus expect
the two qualitative cross-section behaviors:

σ(E) = πλ2 when E is small (2)

σ(E) = πR2
N when E is large (3)

(a) Find the critical energy, that identifies the transition from the deBroglie regime to the nuclide radius
regime, by finding the energy at which these two cross-sections are equivalent. Use E = q2/2µ.
Express this in terms of ~, µ and RN .

(b) Now, assume the nuclear radius is RN = 1 fm and the reduced mass is µ = mu and find what this

energy is in units of MeV. You may want to put the c’s back into the masses (e.g. substitute 1 = c2

c2

into your energy formula) and use the constant ~c = 197.326 MeV fm.

(c) Nuclear experiments relevant for astrophysics are typically done at energies smaller than 1 MeV. Is it
safe to always assume that we are in the deBroglie wavelength regime?

(d) Assume that µ = mu and RN = r0A
1/3 , with r0 = 1.4 fm. Find what value of A, the critical energy

is equal to 1 MeV. Round to the nearest integer A.

(e) Does the deBroglie regime remain valid for small or large A for a cross-section at 1 MeV?
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